
本科生毕业设计（论文）

基于强化学习的无人车高速公路环境换道决
策方法研究

Automated Lane Change Strategy in Highway Environment
Based on Deep Reinforcement Learning

学 院： 自动化学院

专 业： 自动化

学生姓名： 程旭欣

学 号： 1120161412

指导教师： 王美玲

校外指导教师： Ching-Yao Chan

2020年 6月 10日

北京理工大学本科生毕业设计（论文）

摘 要

在高速公路场景下，驾驶员一般会在超车，汇入另一车道，准备驶出高速等情

况时进行换道。不当的换道行为会造成交通紊乱甚至交通事故。目前有很多基于人

工规则的换道决策方法，但它们在面对突发交通状况或非常行为时通常只有非常有

限的性能。深度强化学习在机器人控制和游戏方面取得了巨大的成果。这给我们提

供了另一种思路：通过训练一个智能决策器来完成换道行为的决策。

本研究设计了一种基于近端策略优化的换道策略，定义了强化学习智能体的状

态空间和动作空间。此方法具有数据利用率高效和训练过程稳定的优点。

为确保训练过程中的安全性（避免碰撞），设计了一种危险状态检测器和紧急控

制器。在即将发生碰撞时，紧急控制器将介入并覆盖智能体的危险动作以避免碰撞

发生。通过设置不同的参数，可调整紧急控制器介入的临界点。

为评估智能体策略的表现，提出了多个评估标准。之后，在基于 SUMO的仿真

环境测试了训练完成的智能体策略的表现。训练完成的智能体可以在密度较大的车

流中做出相应的决策来执行流畅，安全并且高效的换道行为。

为进一步说明本策略的有效性，设计了一个基于规则的策略，使用碰撞时间作

为换道决策的依据。对比了基于强化学习的策略和基于碰撞时间的策略在相同环境

下的表现。结果显示基于强化学习的策略在在多个方面的表现超越了基于规则的换

道策略。

关键词：自动驾驶；高速公路；换道决策；深度强化学习；近端策略优化；SUMO；

碰撞时间

I

北京理工大学本科生毕业设计（论文）

Abstract

In a highway driving scenario, lane-change maneuvers are commonly executed by

drivers to overtake a slower vehicle, adapt to a merging lane ahead, prepare to exit high-

way, etc. However, improper lane change behaviors can be a major cause of traffic flow

disruptions and even crashes. While many rule-based methods have been proposed to solve

lane change problems for autonomous driving, they tend to exhibit limited performance due

to the uncertainty and complexity of the driving environment. Deep reinforcement learning

(DRL) offers an alternative approach, which has shown promising success in many appli-

cation domains including robotic manipulation, and playing games.

In this study, we propose an automated lane change strategy using proximal policy

optimization-based deep reinforcement learning, which shows great advantage in learning

efficiency while maintaining stable performance. We define state and action spaces of the

RL agent. To ensure safety constraints during training, we design a danger detector and

an action filter to override unsafe decisions output from RL agent. By setting different

values to the parameters of the danger detector, we can alter the sensitivity of the detec-

tor. We test performance of our policy on a simulation environment developed based on

SUMO(Simulation of Urban Mobility). The trained agent is able to learn a smooth, safe,

and efficient driving policy to determine lane-change decisions (i.e. when and how) in dense

traffic scenarios with different vehicle speed distributions in target lane. To further demon-

strate the effectiveness of our approach, we compare the performance of the proposed policy

with a rule-based policy that make lane change decisions based on TTC(Time to Collision)

using various evaluation metrics. The results demonstrate the lane change maneuvers can

be efficiently learned and executed in a safe, smooth and efficient manner, outperforming

the rule-based policy.

Key Words: autonomous driving; lane change; decision making; deep reinforcement

learning; Simulation of Urban Mobility; Proximal Policy Optimization

II

北京理工大学本科生毕业设计（论文）

Contents

摘 要 .. I
Abstract ... II
Chapter 1 Introduction .. 1

1. 1 Background ... 1
1. 2 Related Work .. 1
1. 3 Thesis Structure .. 4

Chapter 2 Problem Formulation ... 5
2. 1 Proximal Policy Optimization .. 5

2. 1. 1 MDP .. 5
2. 1. 2 Policy Gradient Methods .. 6
2. 1. 3 Proximal Policy Optimization ... 7
2. 1. 4 TD(λ) .. 9

2. 2 Problem Description ... 10
2. 3 System Architecture ... 11
2. 4 State and Action Space ... 12
2. 5 Reward Function ... 13
2. 6 Safety Action Filter .. 16
2. 7 Intelligent Driver Model(IDM) .. 17
2. 8 Baseline Strategy .. 17
2. 9 Summary ... 18

Chapter 3 Simulation Experiment .. 19
3. 1 Simulation Setup .. 19
3. 2 Demand Modeling of SUMO ... 20
3. 3 Evaluation Metrics .. 22
3. 4 Training and Results ... 23

3. 4. 1 Training Setup ... 23
3. 4. 2 Training Results .. 23
3. 4. 3 Demonstration of a Success Lane Change .. 25
3. 4. 4 Comparison between Two Policies ... 27

3. 5 Summary ... 28
Chapter 4 Summary and Future Work .. 29

4. 1 Summary ... 29
III

北京理工大学本科生毕业设计（论文）

4. 2 Future Work .. 29
References ... 30
Acknowledgment .. 33

IV

北京理工大学本科生毕业设计（论文）

Chapter 1 Introduction

1. 1 Background

Automated and semi-automated vehicles are considered to have a great potential to im-

prove transportation safety and efficiency, and a considerable amount of studies has been

performed with a focus on autonomous driving or advanced driving assistance systems

(ADAS). To achieve full autonomous driving, we must consider 3 aspects in an autonomous

driving system: perception, decision and execution. For perception, there are many state-

of-the-art object detection techniques using multiple sensor inputs such as Lidar and RGB

cameras in order to get information of the surrounding environment of ego vehicle[1]. For

decision making, the autonomous vehicle (ego vehicle) must make reasonable and safe de-

cisions under uncertain and highly dynamic environment based on the information acquired

by the perception layer[2]. As for execution, an ego vehicle needs to have smooth and reliable

control in both lateral and longitudinal direction.

Highway environment is the most common scenario where level 3 and level 4 au-

tonomous driving is applied. The ego vehicle needs to make decision to achieve high effi-

ciency as well as absolute safety at all times, especially in more dynamic environment with

frequent interactions with surrounding objects such as a lane change scenario. In a highway

environment, an accident happens with a higher probability during a lane change maneuver

such as ramp merge or preparing to exit the highway[3]. A study showed that roughly 10

percent of all highway accidents are cause by lane change maneuvers[4]. Therefore, a safe,

smooth and efficient lane change maneuver is crucial to achieve level 3 or 4 autonomous

driving. To satisfy the aforementioned requirements, an ego vehicle must be able to make

reasonable decisions in a highly dynamic environment with adversarial and cooperative in-

teractions taken into consideration.

1. 2 Related Work

Even though there have been many mature and applicable autonomous driving systems

currently in use on a massive number of vehicles, it is still challenging to achieve automated

decision-making and control to drive vehicles smoothly and effectively in some cases.
1

北京理工大学本科生毕业设计（论文）

A set of literature applied rule-based model to address the path-planning and trajectory

tracking problems under interactive situations. For example, the approaches of a potential

field model and model predictive control are suggested in works by Rasekhipour, Y. et al.[5],

Kim, B. et al.[6], and Ji, J., Khajepour. et al.[7]. However, as in a real-world scenario, some

irrational and unforeseen behaviors (e.g. uncooperative vehicles) may render the aforemen-

tioned methods inefficient. While expert demonstrations from human drivers can be used to

learn certain driving tasks via imitation learning[8], a substantial amount of data needs to be

collected at all possible conditions (with variation in surrounding traffic, road signs, traffic

light) for training, which is costly. Moreover, it requires massive human labor to label such

data, but still may not cover all of the complex situations in real-world driving scenarios.

Even with such prerequisites of imitation learning, drifts in behaviors can still cause catas-

trophic results. As Data Aggregation(DAGGER) can mitigate this drift effect, it is still hard

to manually label data frame by frame from a simulator, which is against human’s intuition.

Because driving is a continuous decision making process, with only one or two frame of

abstraction states, it is hard for human to label the right action, which can be continuous or

discrete.

On the other hand, reinforcement learning (RL) algorithms have shown great potential

for handling decision-making and control problems, which enables an agent to learn in a

trial-and-error way with interaction with the environment that does not require explicit hu-

man labeling or supervision. Instead, it needs a well-defined reward function to determine

the objective of the agent. RL has demonstrated significant success for solving complex

task in both robotic manipulations[9] and playing video games[10].

However, applying RL to real-world applications is particularly challenging, especially

for autonomous driving tasks that involve extensive interactions with other vehicles in a dy-

namically changing environment. Among a variety of vehicle decision-making and control

problems that were tackled using RL algorithms[11-13], facilitating automated lane change

maneuvers is of special interests, since improper lane change behaviors can be a major cause

of highway crashes and traffic jams[14-17]. An early work of applying deep RL to lane change

can be found in[18], where the Q-masking technique is proposed to act as a mask on the out-

put Q-values in a deep Q-learning framework to obtain a high-level policy for tactical lane

2

北京理工大学本科生毕业设计（论文）

change decisions, while still maintaining a tight integration with the prior knowledge, con-

straints and information from a low-level controller. To overcome the obstacle of rule-based

models that are prone to failures in unexpected situations or diverse scenarios, a Q-function

approximator with closed form greedy policy is proposed in a recent work[19]. In another

work[20], a hierarchical RL based architecture is presented to make lane change decisions and

execute control strategies. Specifically, a deep Q-network (DQN) is trained to decide when

to conduct the maneuver based on safety considerations, while a deep Q-learning framework

with quadratic approximator is designed to complete the maneuver in longitudinal direction.

Additionally, the applications of deep RL algorithms on lane change strategies are of-

ten challenged by their slow learning rates. In[21], this problem is addressed by making use

of a minimal state representation consisting of only 13 continuous features, which facili-

tates a faster learning while training a DQN. Moreover, a technique referred to as “multi-

objective approximate policy iteration (MO-API)” is presented in[22]. The value and policy

approximations are learned using data-driven feature representations, where sparse kernel-

based features or manifold-based features can be constructed based on data samples. It is

concluded that better learning efficiency can be achieved using the proposed MO-API ap-

proach, when compared to benchmark RL algorithms such as multi-objective Q-learning.

While these methods are centered around manipulating the feature space, more effective RL

algorithms can be also employed to facilitate efficient learning rates and reduce the high

variance in policy learning.

To address the above issues, in this work, we apply a proximal policy optimization

(PPO)[23] based deep reinforcement learning method with an actor-critic structure, which

combines policy gradient methods with a learned value function. The parameterized actor

with Adam optimizer can enforce a trust region with clipped objectives that reduce the high

computation burden in nonlinear conjugate gradient of TRPO[24]. Moreover, PPO tends

to be more efficient in sampling and learning policies than TRPO. Meanwhile, compared

to value-based methods, PPO is able to compute actions directly from the policy gradient

rather than optimizing from the value function. On the other hand, the merit of the critic is

to supply the actor with the knowledge of performance in low variance. All of these nice

properties of PPO can improve its capability in real-life application domains.

3

北京理工大学本科生毕业设计（论文）

1. 3 Thesis Structure

The objective of this study is to develop a decision-making strategy to enable automated

mandatory lane change maneuvers centered around the objectives of comfort, efficiency,

speed and safety, using the concept of PPO-based deep reinforcement learning. We test our

methods in SUMO, a simulation environment for urban traffic flows.

• Chapter 1 Introduction: In this chapter, we introduce autonomous driving and some

challenges it is currently facing. Besides, we talk about how reinforcement learning

is applied to various of fields including games, robotics and autonomous driving. In-

spired by this studies, we propose a new idea of using reinforcement learning to make

lane change decisions in a highly dynamic highway environment.

• Chapter 2 Problem Formulation: This chapter introduces the Proximal Policy Op-

timization algorithms and the formulation of reinforcement learning including state

and action spaces and reward function design. Besides, we show how the safety ac-

tion filter work to avoid collision during simulation. We also introduced the IDM car

following model. Lastly, we design a rule-based baseline lane change policy in order

to compare with the proposed one.

• Chapter 3 Simulation Experiment: We show how to setup the simulation environ-

ment in this chapter and proposed several evaluation metrics for validating our results.

We demonstrate the results from training by showing an example. We also compare

our method with the rule-based decision making policy to show the effectiveness of

the proposed method.

• Chapter 4 Summary and Future Work: In this chapter, we make a conclusion of

our work and find some drawbacks of our method. Further more, we propose several

direction of future work.

4

北京理工大学本科生毕业设计（论文）

Chapter 2 Problem Formulation

2. 1 Proximal Policy Optimization

In a Reinforcement learning (RL) setup, we assume there is an unknownMDP(Markov

Decision Process). An agent acts by interacting with the environment and collects informa-

tion about the environment. Then the agent uses the information to improve its policy in

order to maximize the expected cumulative rewards returned by the environment. There

are two kinds of RL algorithms, model based RL and model free RL based on whether the

model of the unknownMDP is approximated and then solved or not. Model based RL needs

a large number of samples to infer the parameters of aMDP, which has high variance in some

cases where an event with very small probability is hard to get sampled[25]. Then it solves

the MDP using value iteration, policy iteration or other dynamic programming methods[26].

However, model-free RL does not need to explicitly know a MDP. For model-free RL, there

are two general categories of RL algorithms, namely value-based method and policy-based

method. While value-based methods can approximate the value function or action value

function(Q-function) using neural networks in an off-policy way such as the state-of the art

DQN[27], the primary advantage of policy-based methods, such as the REINFORCE algo-

rithm[28], is that they can directly optimize the quality of policy, have better convergence

properties and are effective in high-dimensional or continuous action spaces. Our study

thus focuses on policy-based RL methods. By incorporating value-based and policy-based

methods, we have actor-critic style methods, where we can approximate the value first and

use it to improve our policy.

2. 1. 1 MDP

An MDP(Markov Decision Process) is used to describe an environment used in rein-

forcement learning, where the states of the environment is fully observable. It consists of

a tuple (S,A, T,R, γ), where S is the state space, A is the action space, T is the transition

probability,R is the reward function and γ is the discount factor. The objective of reinforce-

ment learning is to find a policy π(a|s) that models the conditional distribution over action

a ∈ A given a state s ∈ S. At each timestep of the MDP, the agent observes the current

5

北京理工大学本科生毕业设计（论文）

Figure 2-1 Markov Decision Process

state st of the environment and then samples an action at according to the policy π. The

environment will then respond with a new state st+1 according to the transition probability

T (st+1|st, at) and a scalar reward r(st, at). For a parametric policy πθ in which the parame-

ters θ is usually weights in a neural network, the objective of an agent is to find the optimal

θ∗ that maximize the expected cumulative reward

max
θ
J(θ) (2-1)

where

J(θ) = Eτ∼pθ(τ)

[
T∑
t=0

γtrt

]
(2-2)

where pθ(τ) = p (s0)
∏T−1

t=0 p (st+1|st, at)πθ (at|st) is the probability of trajectory τ =

(s0, a0, s1, a1, ..., sT−1, aT−1, sT) under policy πθ, with p(s0) being the initial state distri-

bution.

2. 1. 2 Policy Gradient Methods

To optimize the objective function in 2.1, we can use a class of methods called ”Policy

Gradient Methods”[29], where the gradient of the objective function ∆J(θ) can be approx-

imated by a gradient estimator. Recall that we want to maximize the objective function

J(θ) in equation 2-2. The most commonly used method is gradient descent methods where

we need to take the gradient of the objective function and then apply a gradient step. The

gradient can be estimated by:

∇θJ(θ) = Est∼dθ(st),at∼πθ(at|st)
[
∇θ log (πθ (at|st)) Ât

]
(2-3)

6

北京理工大学本科生毕业设计（论文）

where πθ is a stochastic policy and Ât = Rt−V (St) is an estimator of the advantage function

at timestep t. Rt =
∑T−t

l=0 γ
lrt+l represents the return received by a particular trajectory

starting from state st at time t. V (St) is a value function that estimates the average return of

starting in st and following the policy for all subsequent steps.

V (St) = E[Rt|st, πθ] (2-4)

The expectation E indicates the empirical average over a finite batch of samples col-

lected in interactions with the environment under current policy. Then we can construct an

objective function whose gradient is the gradient estimator. We formulate the estimator as:

LPG(θ) = Et
[
logπθ (at|st) Ât

]
(2-5)

The policy is trained using the proximal policy optimization algorithm[23], which has

shown state-of-the-art results on a number of challenging problems. The value function is

trained using multi-step returns with TD(λ). The advantages Ât is computed using the gen-

eralized advantage estimatorGAE(λ)[30]. We will introduce these methods in the following

sections.

2. 1. 3 Proximal Policy Optimization

As stated previously, we can estimate the gradient of the objective function J(θ) by

collecting a batch of samples from current policy π(a|s). However, in this way the collected

samples can only be used once to update the parameters θ. Then we need to discard previous

data and use updated policy to collect a new batch of data. Sampling efficiency can be

improved by using importance sampling.

∇θJ(θ) = Est∼dθold (st),at∼πθold (at|st)
[
rt(θ)∇θ log (πθ (at|st)) Ât

]
(2-6)

rt(θ) =
πθ(at|st)
πθold (at|st)

(2-7)

Apply gradient with importance sampling can be seen as maximizing the surrogate

7

北京理工大学本科生毕业设计（论文）

objective:

LIS = Est∼dθold (st),at∼πθold (at|st)
[
rt(θ)Ât

]
(2-8)

While it might be appealing and straightforward to perform multiple steps of optimiza-

tion on this loss function LPG(θ) or LIS(θ), many challenges can arise from the prevalence

of sample inefficiency, the balance between exploration and exploitation, and the undesir-

able high variance of the learned policy. Empirically, it often leads to destructively large

policy updates, which are destructive since they can also affect the observation and reward

distribution at future time steps.

Compared to this fundamental loss function LPG(θ) to update a policy, some advanced

policy-based algorithms such as TRPO[24] and PPO[23] take the actor-critic structure, which

is able to combine advantages of traditional value-based and policy-based approaches. The

PPO algorithm is also much simpler to implement, more general, and have better sample

complexity (empirically). Specifically, the PPO employs a neural network architecture that

shares parameters between the policy and value function, and its loss function also combines

the policy surrogate and a value function error term, which is defined as[23]

LCLIP (θ) = Et
[
min

(
rt(θ)Ât, clip (rt(θ), 1− ϵ, 1 + ϵ) Ât

)]
(2-9)

where ϵ is a hyper-parameter, and rt(θ) denotes the probability ratio. In this manner, the

probability ratio r is clipped at 1− ϵ or 1+ ϵ depending on whether the advantage is positive

or negative, which forms the clipped objective after multiplying the advantage approximator

Ât. The final value of LCLIPt takes the minimum of this clipped objective and the unclipped

objective rt(θ)Ât, which can effectively avoid taking a large policy update compared to the

unclipped version[23], which is also known as the loss function of the conservative policy

iteration algorithm[31].

LCLIP+V F
t (θ) = Et

[
c1L

CLIP
t (θ)− c2LV Ft (θ)

]
(2-10)

where LCLIPt is the clipped surrogate objective, c1, c2 are coefficients, LV Ft is the squared-

error loss of the value function (Vθ (st) − V targ
t)2. The pseudo code for PPO is shown in

Algorithm 1.
8

北京理工大学本科生毕业设计（论文）

Algorithm 1: Proximal Policy Optimization
θ ← random weights;
ψ ← random weights;
while not done do

s0 ← get initial states;
for step in 1, ...,m do

s← start state;
a ∼ πθ(a|s);
Apply a and simulate for one step;
s
′ ← endstate;
r ← reward;
record (s, a, r, s′) into memory D

end
θold ← θ for each update step do

Sample minibatch of n samples (si, ai, ri, si) from D;
Update value function:
for each (si, ai, ri, si) do

yi ← compute target value using TD(λ)
end
ψ ← ψ + αv

(
1
n

∑
i∇ψVψ (si) (yi − V (si))

)
Update policy:
for each (si, ai, ri, si) do
Ai ← compute advantage using Vψ and GAE);
wi(θ)← πθ(ai|si)

πθold (ai|si)
;

end
θ← θ + απ

1
n

∑
i∇θmin (wi(θ)Ai, clip (wi(θ), 1− ϵ, 1 + ϵ)Ai);

end
end

2. 1. 4 TD(λ)

When using a parameterized stochastic policy, it is possible to obtain an unbiased esti-

mation of the gradient of the expected total returns we mentioned earlier[32]. However, the

variance of the gradient estimator grows unfavorably with the time horizon expanding to

infinity, due to the fact that the action at a timestep t will affect future states and actions.

We denote the return Rt =
∑T−t

l=0 γ
lrt+l as the Monte-Carlo return, which will provide an

unbiased estimate of the expected return at a given state but can have high variance due to

stochasticity of the environment and policy.

Another method is to use a value function rather than empirical returns stated above to

provide a lower-variance estimation at the cost of introducing some bias[33]. Then step return

9

北京理工大学本科生毕业设计（论文）

can be obtained by truncating the sum of empirical returns after n steps, and approximate

the return for remaining timesteps with a value function V (s):

R
(n)
t =

n−1∑
l=0

γlrt+l + γnV (st+n) (2-11)

R
(1)
t = rt + γV (st+1) is the 1-step return TD(1) commonly used in Q-learning[34].

R
(∞)
t =

∑T−t
l=0 γ

lrt+l = Rt is exactly the original Monte-Carlo empirical return TD(∞)

with the maximum horizon for each episode is T . WhileRt is an unbiased but high variance

estimator, R(1)
t reduces the variance but adds bias to the estimation. Thus, we can trade off

between variance and bias between variance and bias by alternating n.

However, there is another way to make trade-off between bias and variance that gener-

ally has better performance. We want to combine the advantage of low variance of TD(1)

and no bias of TD(∞) by taking exponentially-weighted average of n-step returns with

decay parameter λ:

Rt(λ) = (1− λ)
∞∑
n=0

λnRn+1
t (2-12)

where Rn
t is TD(n) return and λ is the exponential coefficient. (1− λ) is an normalization

coefficient due to the fact that
∑∞

n=0 λ
n = 1

1−λ s.t.λ ∈ (0, 1). Rt(0) = R
(1)
t and Rt(1) =

R
(∞)
t . Values of λ ∈ (0, 1) result in estimated return that balances between bias and variance.

Then we can use the computed λ-return to update the value function, which is the TD(λ)

algorithm.

Similarly, we can estimate the advantage with λ-return by subtract the value function,

yielding the generalized advantage estimator GAE(λ):

Ât = Rt(λ)− V (st) (2-13)

Then we can use TD(λ) and GAE(λ) to perform value and policy update in Algorithm 1.

2. 2 Problem Description

A lane change action is conducted when the vehicle needs to exit the highway, overtake

a slower vehicle, adapt to the merging lane ahead, etc. Lane change maneuvers are usually
10

北京理工大学本科生毕业设计（论文）

classified into two major categories: mandatory and discretionary. Compared to a discre-

tionary lane change that is intended to achieve faster speed or better driving experience, a

mandatory lane change usually occurs when the ego vehicle is forced to make a lane change

due to either a lane drop or a highway exit.

In our formulation, we focus on mandatory lane change situations where explicit lane

change intentions are already given by the vehicle route planner, and our task is to decide

when and how to make the lane change maneuver based on states of surrounding vehicles

and the ego vehicle itself. Once a decision is made by the model, a low-level controller is

used to generate a corresponding control command to execute the decision. The applicable

lane change policy to be learned should incorporate the following three functionalities:

• Avoiding collisions with surrounding vehicles

• Achieving high efficiency

• Executing smooth maneuvers

Figure 2-2 System architecture of the proposed PPO-based automated lane change strategy

2. 3 System Architecture

The overall system architecture for enabling automated lane change is shown in Figure

2-2. There are two major components in the system: a learner model and a simulation envi-

ronment. Specifically, the learner model uses PPO to train the ego-vehicle (agent) to learn

a high-level policy for decision making tasks while interacting with the surrounding traffic.
11

北京理工大学本科生毕业设计（论文）

We use two neural networks to parameterize policy π(a|s) and value function V (st). They

have the same structure with the input layer size 21, each of the 2 hidden layer containing 128

neurons. For the value network, there is only one output node without activation function.

The output of policy network has a size of 6 with sigmoid as activation function. Simula-

tion environment, which includes the road network, traffic, and different task scenarios, is

generated using a high-fidelity microscopic traffic simulation suite SUMO (Simulation of

Urban Mobility)[35], and it is used to interact with the training agent. Using SUMO and its

associated traffic control interface (TraCI), we can access the vehicle information in the road

network, and execute high-level decisions regarding vehicle dynamics given by the learned

deep neural network models.

To enable safe, smooth, and efficient driving behaviors on highways, the ego-vehicle

first receives its current state and its surrounding vehicles’ state from the SUMO environ-

ment through TraCI, and these states are fed into the policy and value network. Next, the

ego-vehicle determines the longitudinal and lateral actions based on the developed policy

network, which then sends the action back to SUMO to model the vehicle’s movement in

the next time step. Then the environment will return to the agent a scalar reward and obser-

vations of next step.

2. 4 State and Action Space

We consider the state or 5 vehicles involved in the lane change decision and execution

phase as shown in Figure 2-3: (1) the ego-vehicle Ce; (2) the leading vehicle in the original

laneC0; (3) the leading vehicle in the target laneC1; (4) the following vehicle in the original

lane C2; and (5) the following vehicle in the target lane C3.

The state space is composed of a total of 21 continuous state variables from both the

ego-vehicle and its surrounding vehicles. Specifically, the ego-vehicle has 5 state variables,

including its longitudinal position, speed, acceleration, as well as its lateral position and

speed. Additionally, each surrounding vehicle has 4 state variables: relative distance to the

ego-vehicle, longitudinal speed, acceleration, and lateral position.

In this study, we design the action space in both the lateral and longitudinal direction, so

that an agent can learn when and how to perform a lane change. For the lateral command, we

12

北京理工大学本科生毕业设计（论文）

Figure 2-3 A demonstration of a lane change scenario

have two discrete actions {0, 1}, in which “0” represents keeping current lateral position, and

“1” indicates performing lane change maneuver at a constant lateral speed−1m/s(meaning

moving to the target lane laterally). For longitudinal strategy, there are three discrete actions

{0, 1, 2}, in which each chosen action denotes the longitudinal acceleration.

Therefore, there are an altogether 6 actions combining different cases of actions in both

the lateral and longitudinal direction, which are shown in Table 2-1.

Table 2-1 Action space and corresponding acceleration

Lateral Longitudinal

Action 0 1 0 1 2

Corresponding Accelerationm/s -1 0 -1.5 0 1.5

2. 5 Reward Function

The reward function is designed to incorporate key objectives of this study, which is

to develop an automated lane change strategy centered around safety, efficiency, speed, and

comfort. More specifically, these ideas are explained as follows:

1. Comfort: evaluation of jerk (lateral and longitudinal direction);

13

北京理工大学本科生毕业设计（论文）

2. Efficiency: evaluation of whether lane change is successful;

3. Speed: evaluation of difference of actual and desired speed;

4. Safety: evaluation of the risk of collisions and near-collisions.

The reward function representing comfort can be expressed as:

Rcomf (t) = −1 + exp(−α · ȧy(t)2 − β · ay(t)2) (2-14)

where ȧy and ay are the lateral jerk and the lateral acceleration. This reward function is

introduced to avoid sudden acceleration or deceleration of the vehicle that may cause vehicle

occupant discomfort. Here we choose α = 1 and β = 0.1.

In terms of efficiency, the ego-vehicle should try to move to the target lane as soon

as possible since we are considering mandatory lane change, thus the efficiency reward

function can be defined as:

Reff (t) = −1 + exp(−dt) (2-15)

where dt is the ego vehicle’s current lateral distance to the center of target lane.

To encourage the ego vehicle complete lane change behavior while achieve its desired

speed, we designed the reward for speed as:

Rspeed = −1 + exp(−abs(Vy − Vdesired)) (2-16)

where Vy is the current longitudinal speed of ego vehicle.

In order to improve the safety in the automated lane changing process and give the RL

agent denser rewards, we introduce a near collision penalty function instead of only returning

a penalty when a collision actually happened. In this case, an ego-vehicle can learn to avoid

such circumstances either by stop lane change or adjust to a safe distance. The criteria to

check if the current situation is dangerous or not is described in section 2. 6.

14

北京理工大学本科生毕业设计（论文）

Thus the designed safety reward takes the form of:

Rsafety =


curr_timestep− 250 if level − 2 danger occurs

−1 else if level − 1 danger occurs

−1 + tanh(min(ttctl, ttcol)) else

(2-17)

where “level-1” and “level-2” danger is defined in section 2. 6. When “level-2” danger

occurs, the current episode ends and we assume the post reward is all -1. ttctl and ttcol are

the Time to Collision to leader vehicle in target lane and original lane and are computed by:

ttctl =
∆dt
Vy

(2-18)

ttcol =
∆do
Vy

(2-19)

where ∆dt and ∆do is the longitudinal distance between ego vehicle and leader vehicle in

target lane and original lane.

The total reward is

rtotal = w[Rcomf , Reff , Rspeed, Rsafety]
T (2-20)

where

r = [0.2, 1, 0.1, 1] (2-21)

w =
r∑

ri∈r

ri
(2-22)

By applying exponential function and a bias term−1we can bound the reward for each

step in [−1, 0]. And through normalizing the weight termwe can ensure that at each timestep

the reward is bounded in [−1, 0], which makes learning easier.

15

北京理工大学本科生毕业设计（论文）

2. 6 Safety Action Filter

To avoid collision during simulation, we designed a safety filter over the actions output

by our policy. We consider 2 scenarios where the action of an ego vehicle can be defined

as “dangerous”, under which the action from the safety controller will replace what comes

from the policy network. The first scenario is rear-end collision, where two vehicles overlap

in lateral direction and have very small longitudinal distance in the meanwhile. The other

scenario is side collision, when two vehicles are approaching each other in lateral direction

while overlap in longitudinal direction. Once any of the aforementioned scenarios occurs,

we say that the current state is ”dangerous”. To be more specific:

Dlat =

1 if W < |xego − xother| < W + dlat and |yego − yother| < L+ dlongi

0 else

(2-23)

Dlongi =

1 if W ≥ |xego − xother| and |yego − yother| < L+ dlongi

0 else

(2-24)

where Dlat and Dlongi are flags indicating whether it is dangerous in respective di-

rections. W = widthego+widthother
2

represents half of sum of width of two vehicles. L =

lengthego+lengthother
2

represents half of sum of length of two vehicles.

dlat and dlongi are the safety distances in lateral and longitudinal directions respectively.

By having different dlat and dlongi values we can get different levels of danger. We define the

situation when Dlongi = 1 or Dlat = 1 with dlongi = 10 and dlat = 0.8 as “level-1 danger”

and with dlongi = 5 and dlat = 0.3 as “level-2 danger”

Here, a “level-1” danger is a soft constraint on the ego vehicle which will give a reward

of -1 to alert the ego vehicle. However, a “level-2” danger occurs when a collision is about

to happen and is very dangerous in real-world scenarios. If a “level-2” danger either in

longitudinal or lateral direction is detected, the safety filter will cover the action from the

16

北京理工大学本科生毕业设计（论文）

Table 2-2 Meaning of parameters in IDM

Parameter Meaning

v0 the velocity the vehicle would drive at in free traffic

s0
minimum desired net distance.

A car can’t move if the distance from the car in the front is not at least s0

Tm the minimum possible time to the vehicle in front

a the maximum vehicle acceleration

b comfortable braking deceleration; positive

policy with the corresponding emergency behavior to avoid collision.

2. 7 Intelligent Driver Model(IDM)

In traffic flow modeling, the intelligent driver model (IDM) is a time-continuous car-

following model for the simulation of freeway and urban traffic.[36] As a car-following

model,the IDM describes the dynamics of the positions and velocities of single vehicles.

For vehicle α, we denote its position at time t as xα and velocity as vα. lα is the length of the

vehicle. Further more, we define sα := xα−1 − xα − lα−1 as the net distance, where α − 1

refers to the vehicle directly in front of vehicle α and ∆vα := vα − vα−1. The dynamics of

vehicle α are described by the following ordinary differential equations:

ẋα = dxα
dt = vα

v̇α = dvα
dt = a

(
1−

(
vα
v0

)δ
−
(
s∗(vα,∆vα)

sα

)2
)

with s∗ (vα,∆vα) = s0 + vαTm + vα∆vα
2
√
ab

(2-25)

The meaning of model parameters is listed in Table. 2-2

2. 8 Baseline Strategy

To further demonstrate the effectiveness of our controller, we designed a rule-based

baseline lane change decision making strategy. For longitudinal control, rather than using

discrete actions as in our RL policy, we choose to use IDM in order to achieve more realistic

17

北京理工大学本科生毕业设计（论文）

longitudinal dynamics. For lateral control, we use TTC(Time to Collision) as the criteria of

whether to perform lane change or not.

TTCtl =
dtl
vego

(2-26)

TTCtf =
dtf
vtf

(2-27)

where TTCtl and TTCtf are Time to Collision of leader and follower in target lane respec-

tively. dtl and dtf are the distance between ego and leader/follower in target lane. vtl and vtf

are the speed of leader/follower in target lane. And vego is the speed of ego vehicle. Then

we define the lane change strategy as

alateral =

1 TTCtl > t̂tc and TTCtf > t̂tc

0 else

(2-28)

where alateral is the lateral action and t̂tc is the threshold of whether or not to perform lane

change. We also use the evaluation metrics in section 3. 3 to evaluate the performance of

the baseline policy with different t̂tc.

2. 9 Summary

In this chapter, we introduced Markov Decision Process (MDP) and the reinforcement

learning setup. We also talked about the state-of-the-art Proximal PolicyOptimization (PPO)

algorithm derived from actor-critic reinforcement methods, and how to do advantage esti-

mation using TD(λ). Then, we clarified the problem description, formulated our problem

as an MDP and defined state and action spaces. Next we defined the reward function which

is essential to reinforcement learning. Besides, we introduced a safety action filter and de-

fined 2 types of dangerous situations. We treat the “level-2” danger as an early termination

criteria which is important for RL agent not to collect too much useless information and so

that there will not be collision during training. IDM is introduced for vehicles other than the

ego vehicle. Last, we introduced the rule-based baseline strategy for lane change decision

making based on TTC(Time to Collision).

18

北京理工大学本科生毕业设计（论文）

Chapter 3 Simulation Experiment

3. 1 Simulation Setup

The simulation network is modeled using a real-world highway segment with on-ramps

and off-ramps as shown in Figure 3-1, which is implemented on SUMO. The highway seg-

ment length to the ramp exit is 800 m and each lane is 3.2 m in width. Vehicle counts are

generated from a binary probability distribution to simulate the traffic of different density.

In this study, we constrain the maximum acceleration and emergency braking deceleration

of vehicles as 2.9 m/s2 and −4.5 m/s2, respectively.

(a) Satellite image of selected highway

(b) Extracted highway structure in SUMO

Figure 3-1 Simulation Network

In order to make the proposed simulation network as similar to real traffic as possible,

we applied the intelligent driver model (IDM)[37] to other vehicles’longitudinal control

which we will cover in the next subsection. In SUMO environment, we also make the lane

change mode of other vehicles to be ”no-lane-change”, meaning that there will only be lane

change behaviors of the ego vehicle. When the ego vehicle makes lateral movement to the
19

北京理工大学本科生毕业设计（论文）

target lane, the follower vehicle in the target lane has 2 possible behaviors: observing the

lane change maneuver and take the ego vehicle as its leader; not observing the ego vehicle

and continuing following its original leader vehicle. In the second case, there is a larger

chance of dangerous interaction or even collision. To make the task more challenging and

more realistic, we make the follower vehicle in the target lane randomly choose between

these two behaviors.

3. 2 Demand Modeling of SUMO

After we have the network extracted from OSMmaps, we still cannot run a simulation.

The thing that is missing is the definition of behaviors of vehicles, which we define as Traffic

Demand. In order to generate traffic, we need to first define a route, which delineate the path

a vehicle will be driving on. Then we need to define vehicles’ departure location and arrival

location as well as other properties of the vehicle such as desired driving speed, maximum

acceleration and deceleration, etc.

We use flow to describe a continuous traffic flow. There are 3 lanes on each direction

in the highway. We only model 2 lanes where the lane change behavior occurs, where the

original lane is the lane the ego vehicle starts from and target lane is the lane the ego vehicle

is going to change to. A vehicle will be emitted randomly with the given probability p each

second. This results in a binomially distributed flow (which approximates a Poisson Dis-

tribution for small probabilities). The density of the traffic varies with different probability

values. Figure 3-1 demonstrate 3 different traffic density achieved by alternating p.

(a) p = 0.2, light traffic

20

北京理工大学本科生毕业设计（论文）

(b) p = 0.4, medium traffic

(c) p = 0.7, dense traffic

Figure 3-1 Traffic flow of different densities

We found that in medium and light traffic setting, lane change is safe and discretionary

in the majority of cases. So in this study we only focus on the case of dense traffic which is

more challenging. In addition, we alternate the average speed of vehicles in target lane to

increase the dynamic of the environment and demonstrate the capability of generalization

of our model.

The desired speed Vdesired for each vehicle is computed using a clipped normal distri-

bution:

speedFactor ∼ clip(N (µ, σ2), clow, chigh) (3-1)

Vdesired = speedFactor × Vlimit (3-2)

Vlimit = 29m/s is the speed limit of the lane. For vehicles in original lane, µ = 1. In
21

北京理工大学本科生毕业设计（论文）

terms of vehicles in target lane, there are 3 different speed distributions randomly sampled

for each episode during training. The parameters of these 3 distributions are shown in Table

3-1.

Table 3-1 Parameters of different speed distributions

Parameter Fast Normal Slow

µ 1.3 1 0.7

σ 0.1 0.1 0.1

clow 1.1 0.8 0.5

chigh 1.5 1.2 0.9

3. 3 Evaluation Metrics

To quantify the safety and effectiveness of the proposed PPO-based automated lane

change model in both training and testing process, we add five metrics that evaluate the

average level-1 danger timesteps(ADT1), average level-2 danger timesteps(ADT2), aver-

age task success rate(ATSR), average episode reward(AER) and average task completion

time(ATCT), which are computed under 100 rollouts(episodes). The danger counts both

rear-end danger and side-impact danger, which is delineated in section 2. 6. A successfully

task in a simulation run is defined as the ego-vehicle having successfully changed to the

target lane and maintain on that lane for 1s before reaching the exit and managed to avoid

collisions with other vehicles. We can formulate the above three metrics as:

ADT1 =
N̂1

Ntotal

(3-3)

ADT2 =
N̂2

Ntotal

(3-4)

ATSR =
Nsucc

Ntotal

(3-5)

AER =
∑
Ti

Ti∑
t=0

rit (3-6)

22

北京理工大学本科生毕业设计（论文）

ATCT =

∑
epi∈Esucc

lepi

Ntotal

(3-7)

where N̂1 and N̂2 are the total timesteps with level-1 or level-2 danger in Ntotal = 100

episodes. lepi is the length of episode i. Esucc is a set containing all the episodes with success-

ful lane change. Note that hereADT1 andADT2 can be larger than 1whileATSR ∈ [0, 1].

3. 4 Training and Results

3. 4. 1 Training Setup

In terms of training, we utilize the PPO implementation of OpenAI baselines and mod-

ify it to suit our task. We use Adam[38] as our optimizer andMPI(Message Passing Interface)

to parallel simulation. The hyper-parameters we use during training is shown in Table 3-2.

For training platform, we use an 8-core intel i7-9700k for simulation and Nvidia RTX

2070 for neural network computation.

Table 3-2 Hyper-parameters for training

learning rate 2−3

maximum episode length 250

timesteps per actor batch 2048

optimization epochs per actor batch 5

optimization batch size 512

discount factor γ 0.99

decay coefficient λ 0.95

3. 4. 2 Training Results

The training converged after about 5 hours and 17 minutes with 8 parallel threads.

The training took 2000 iterations of optimization, collected about 3.3 × 107 samples and

completed about 5× 105 episodes.

The average cumulative total reward and sub-rewards, as well as some of the evaluation

metrics, are shown in Figure 3-2.

23

北京理工大学本科生毕业设计（论文）

(a) Average episode reward(AER) (b) Reward for comfort

(c) Reward for speed (d) Reward for efficiency

(e) Reward for safety (f) Average task success rate(ATSR)

(g) Average level-1 danger timesteps(ADT1) (h) Average level-2 danger timesteps(ADT2)

Figure 3-2 Rewards and evaluation metrics during training

24

北京理工大学本科生毕业设计（论文）

The curve of the cumulative reward indicates the ego-vehicle can successfully learn to

take actions to maximize the reward. The dark line in Figure 3-2 means smoothed curve for

better visualization.

In the training process, a continuously increasing success rate can be observed in Figure

3-2 (f) indicating that the ego vehicle learned to perform lane change maneuver accordingly.

On the contrary, the average level-1 danger timesteps shown in Figure 3-2 (g) decreased

to its lowest values during the early stage of the training and then gradually grow a little

bit and fluctuate with the training process. This can be explained by that the reward for

level-1 danger is only -1, acting as a role to alert the ego vehicle the current situation is not

desirable. However, the ego vehicle can still perform lane change at this risk in order to get

further reward for efficiency. As for the average level-2 danger timesteps shown in Figure

3-2 (h), we can see that it is mostly monotonous because the penalty for a level-2 danger is

very high.

3. 4. 3 Demonstration of a Success Lane Change

To further demonstrate the effectiveness of our method, we make a challenging envi-

ronment where the vehicle speed distribution in the target lane is using Slow distribution

which will result in denser traffic in target lane and is closer to real-world settings. The

entire process of the lane change maneuver is shown is Figure 3-3. Initially, as shown in

Figure 3-3 (a), the speed of the ego vehicle is about 26 m/s (93.6km/h), but the speed of

the leader vehicle in target lane is only 17 m/s (61.2km/h). The ego vehicle did not choose

to perform lane change instantly. on the contrary, it chooses to reduce its speed and merge

into the next gap to avoid dangerous situation or even collision. By the time the ego vehicle

reaches the next gap, the speed has been reduced to about 18m/s (64.8km/h) as shown in

Figure3-3 (b). Then it starts to change lane and finally accomplishes the maneuver safely as

shown in Figure 3-3 (c).

25

北京理工大学本科生毕业设计（论文）

(a) Initial situation. Speed of ego vehicle is much larger than vehicles in target lane.

(b) After adjustment, the ego vehicle reduced its speed and prepare to perform lane change.

(c) The ego vehicle successfully completed the lane change maneuver.

Figure 3-3 Demonstration of a lane change maneuver performed by trained RL policy

26

北京理工大学本科生毕业设计（论文）

3. 4. 4 Comparison between Two Policies

We evaluate both RL-based policy and rule-based policy using the same evaluation

metrics and same set of random seeds to ensure fairness. Unlike during training, during

evaluation, the hard safety constraint do not work any more because we want to see the

performance of the policies without any external assistance. For RL-based policy, we test

the performance of our model with 100 episodes with different random seeds, the trained

agent can achieve a 100% success rate, while the average level-2 danger timesteps being only

0.02, meaning that during the 100 episodes there are only 2 timesteps of occurrence of level-2

danger, which can be in the same episode or 2 distinct ones. These statistics indicate the ego-

vehicle is capable of learning themandatory lane change strategywith regard to our designed

reward function using the proposed PPO-based model. We compare the performance of the

baseline model with the same set of random seeds, the detailed statistics are shown in Table

3-3.

From Table 3-3 we can see that RL policy achieved very high ATSR while remain a

very low average danger timesteps. Even though the rule-based policy outperformRL policy

in terms of ADT1 with some t̂tc values, other metrics of RL-based policy are significantly

better than the ruled-based policy. This can be explained by that the ego vehicle learned

a to risk some danger to achieve higher efficiency but never risk a higher cost indicated

by ADT2. The ATST of RL policy is 5.5, indicating that the ego vehicle is able to adjust

itself and perform lane change maneuver according to surrounding environment instead of

performing the maneuver as soon as possible.

27

北京理工大学本科生毕业设计（论文）

Table 3-3 Comparison of RL-based strategy and rule-based strategy

Policy ADT1 ADT2 ATSR / % AER ATCT

RL Policy 1.5 0.08 100 -39.8 5.5

Baseline

Policy

t̂tc

0.1 2.13 0.58 99 -89 5.6

0.3 0.88 0.33 99 -70 6.2

0.5 0.77 0.5 90 -73 6.8

1 1.88 1.24 60 -148 9.0

2 3.82 2.09 8 -228 6.7

3 3.82 2.09 5 -230 7.3

3. 5 Summary

In this chapter, we introduced our simulation setup using SUMO (Simulation of Urban

Mobility). We showed how to use demand modeling to generate different traffics. And we

talked about how we evaluate the performance of our policy. In section 3. 4, we showed

our training result on this setup and made a demonstration about how the RL policy make

decisions and successfully make lane changes with dynamic environments. We also com-

pared the performance of RL policy and rule-based policy and came to a conclusion that our

policy outperform the rule-based policy in most critical evaluation metrics for lane change

maneuver.

28

北京理工大学本科生毕业设计（论文）

Chapter 4 Summary and Future Work

4. 1 Summary

This thesis proposed an automated mandatory lane change strategy by using proximal

policy optimization (PPO)[23] based deep reinforcement learning, which features safety, ef-

ficiency, speed and comfort. The high-level PPO policy is used to generate lane-change

decision (i.e. when and how) at each time step based on the current driving situations of

the ego vehicle and its surrounding vehicles, while the lower level control is executed by a

pre-defined model. We have shown the ego-vehicle trained using PPO based deep reinforce-

ment learning can take appropriate actions to maximize the accumulated reward and achieve

a 100% success rate and low danger rate in dense traffic, which demonstrates the effective-

ness of the proposed lane change strategy. We also made comparison between the proposed

PPO policy and a baseline policy, demonstrating that our policy is able to outperform the

baseline policy.

The code for this project is available at https://github.com/chengxuxin/Lane_change_

RL.

4. 2 Future Work

Although we have got a satisfying result for this study, we still need to be aware that

our model is simplified in this study. We did not take real-world vehicle dynamics into con-

sideration and simplified ego vehicle’s longitudinal and lateral behavior to discrete actions,

which is not practical in real world. In terms of observations, we did not consider the noise

and delay of processing information in real-world environments. And we did not perform

real-world testing of the efficiency ans safety of the algorithm due to many factors including

safety concerns. However, from the demonstration we see that the ego vehicle learned some

smart decisions on how to make lane change without risk the danger of collision.

The next step of our study is to make more real-world like environments for the ego

vehicle. The current environment is simplified and is relatively easy for an RL agent. We can

see from the result that even a baseline policy can also achieve 99% of success rate with some

parameters, even though it performs less well on other criteria. Through testing on a more
29

https://github.com/chengxuxin/Lane_change_RL
https://github.com/chengxuxin/Lane_change_RL

北京理工大学本科生毕业设计（论文）

complex and dynamic environment as mentioned earlier can we identify the potential of RL.

Another thought is to incorporate human or expert inference by modeling the probability of

their lane-changing behaviors to achieve better performance and further reduce danger rate

using imitation learning such as Dagger(Data Aggregation). Future research directions may

also involve more interdisciplinary work of RL intertwined with other techniques for better

generalization, some recent examples can be found in combining transfer learning[39, 40].

30

北京理工大学本科生毕业设计（论文）

References

[1] Chen X, Ma H, Wan J, et al. Multi-view 3d object detection network for autonomous driving[C]//
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. [S.l. : s.n.], 2017:
1907-1915.
[2] Brechtel S, Gindele T, Dillmann R. Probabilistic decision-making under uncertainty for autonomous
driving using continuous POMDPs[C]//17th International IEEE Conference on Intelligent Transporta-
tion Systems (ITSC). [S.l. : s.n.], 2014: 392-399.
[3] St-Aubin P G. Traffic safety analysis for urban highway ramps and lane-change bans using accident
data and video-based surrogate safety measures[D]. McGill University Libraries, 2011.
[4] Hetrick S. Examination of driver lane change behavior and the potential effectiveness of warning
onset rules for lane change or” side” crash avoidance systems[D]. Virginia Tech, 1997.
[5] Rasekhipour Y, Khajepour A, Chen S K, et al. A potential field-based model predictive path-planning
controller for autonomous road vehicles[J]. IEEE Transactions on Intelligent Transportation Systems,
2016, 18(5): 1255-1267.
[6] Kim B, Necsulescu D, Sasiadek J. Model predictive control of an autonomous vehicle[C]//2001
IEEE/ASME International Conference on Advanced Intelligent Mechatronics. Proceedings (Cat. No.
01TH8556): vol. 2. [S.l. : s.n.], 2001: 1279-1284.
[7] Ji J, Khajepour A, MelekWW, et al. Path planning and tracking for vehicle collision avoidance based
on model predictive control with multiconstraints[J]. IEEE Transactions on Vehicular Technology, 2016,
66(2): 952-964.
[8] Bojarski M, Del Testa D, Dworakowski D, et al. End to end learning for self-driving cars[J]. ArXiv
preprint arXiv:1604.07316, 2016.
[9] Finn C, Levine S, Abbeel P. Guided cost learning: Deep inverse optimal control via policy optimiza-
tion[C]//International Conference on Machine Learning. [S.l. : s.n.], 2016: 49-58.
[10] Mnih V, Kavukcuoglu K, Silver D, et al. Playing Atari with Deep Reinforcement Learning[J]., 2013.
arXiv: 1312.5602 [cs.LG].
[11] Wang P, Li H, Chan C Y. Continuous Control for Automated Lane Change Behavior Based on
Deep Deterministic Policy Gradient Algorithm[C]//Proc. IEEE Intell. Veh. Sympo. (IV). [S.l. : s.n.],
2019: 1454-1460.
[12] Sallab A, Abdou M, Perot E, et al. Deep reinforcement learning framework for autonomous driv-
ing[J]. Electronic Imaging, 2017, 2017(19): 70-76.
[13] Wang P, Li H, Chan C Y. Quadratic Q-network for Learning Continuous Control for Autonomous
Vehicles[J]. NIPS Workshop Mach. Learn. Auton. Driving, 2019.
[14] Xu G, Liu L, Ou Y, et al. Dynamic Modeling of Driver Control Strategy of Lane-Change Behav-
ior and Trajectory Planning for Collision Prediction[J]. IEEE Transactions on Intelligent Transportation
Systems, 2012, 13(3): 1138-1155.
[15] Yang D, Zheng S, Wen C, et al. A dynamic lane-changing trajectory planning model for automated
vehicles[J]. Transp. Research Part C: Emerging Technol., 2018, 95: 228-247.
[16] Ye F, Wu G, Boriboonsomsin K, et al. Development and Evaluation of Lane Hazard Prediction
Application for Connected and Automated Vehicles (CAVs)[C]//2018 21st International Conference on
Intelligent Transportation Systems (ITSC). [S.l. : s.n.], 2018: 2872-2877.

31

https://arxiv.org/abs/1312.5602

北京理工大学本科生毕业设计（论文）

[17] Wang G, Hu J, Li Z, et al. Cooperative Lane Changing via Deep Reinforcement Learning[J]. ArXiv
preprint arXiv:1906.08662, 2019.
[18] Mukadam M, Cosgun A, Nakhaei A, et al. Tactical decision making for lane changing with deep
reinforcement learning[J]. NIPS Workshop Mach. Learn. Int. Transp. Syst., 2017.
[19] Wang P, Chan C Y, Fortelle A d L. A reinforcement learning based approach for automated lane
change maneuvers[J]. IEEE Intell. Veh. Symp. (IV), 2018.
[20] Shi T, Wang P, Cheng X, et al. Driving decision and control for automated lane change behavior
based on deep reinforcement learning[C]//Proc. Int. Conf. Intell. Transp. Syst. (ITSC). [S.l. : s.n.], 2019:
2895-2900.
[21] Mirchevska B, Pek C, Werling M, et al. High-level decision making for safe and reasonable au-
tonomous lane changing using reinforcement learning[C]//Proc. Int. Conf. Intell. Transp. Syst. (ITSC).
[S.l. : s.n.], 2018: 2156-2162.
[22] Xu X, Zuo L, Li X, et al. A reinforcement learning approach to autonomous decision making of
intelligent vehicles on highways[J]. IEEE Trans. Syst., Man, Cybern. Syst, 2018: 1-14.
[23] Schulman J, Wolski F, Dhariwal P, et al. Proximal policy optimization algorithms[J]. ArXiv preprint
arXiv:1707.06347, 2017.
[24] Schulman J, Levine S, Abbeel P, et al. Trust region policy optimization[C]//Proc. Int. Conf. Mach.
Learn. (ICML). [S.l. : s.n.], 2015: 1889-1897.
[25] Atkeson CG, Santamaria J C. A comparison of direct and model-based reinforcement learning[C]//
Proceedings of International Conference on Robotics and Automation: vol. 4. [S.l. : s.n.], 1997: 3557-
3564.
[26] Meyn S P. The policy iteration algorithm for average rewardMarkov decision processes with general
state space[J]. IEEE Transactions on Automatic Control, 1997, 42(12): 1663-1680.
[27] Gu S, Lillicrap T, Sutskever I, et al. Continuous deep q-learning withmodel-based acceleration[C]//
International Conference on Machine Learning. [S.l. : s.n.], 2016: 2829-2838.
[28] Williams R J. Simple statistical gradient-following algorithms for connectionist reinforcement learn-
ing[J]. Machine learning, 1992, 8(3-4): 229-256.
[29] Sutton R S, McAllester D A, Singh S P, et al. Policy gradient methods for reinforcement learning
with function approximation[C]//Advances in neural information processing systems. [S.l. : s.n.], 2000:
1057-1063.
[30] Schulman J, Moritz P, Levine S, et al. High-dimensional continuous control using generalized ad-
vantage estimation[J]. ArXiv preprint arXiv:1506.02438, 2015.
[31] Kakade S, Langford J. Approximately optimal approximate reinforcement learning[C]//ICML:
vol. 2. [S.l. : s.n.], 2002: 267-274.
[32] Williams R J. Simple statistical gradient-following algorithms for connectionist reinforcement learn-
ing[J]. Machine learning, 1992, 8(3-4): 229-256.
[33] Konda V R, Tsitsiklis J N. Onactor-critic algorithms[J]. SIAM journal on Control and Optimization,
2003, 42(4): 1143-1166.
[34] Mnih V, Kavukcuoglu K, Silver D, et al. Human-level control through deep reinforcement learn-
ing[J]. Nature, 2015, 518(7540): 529-533.
[35] Lopez P A, Behrisch M, Bieker-Walz L, et al. Microscopic Traffic Simulation using SUMO[C]//
The 21st IEEE International Conference on Intelligent Transportation Systems. [S.l.]: IEEE, 2018.

32

北京理工大学本科生毕业设计（论文）

[36] Kesting A, Treiber M, Helbing D. Enhanced intelligent driver model to access the impact of driv-
ing strategies on traffic capacity[J]. Philosophical Transactions of the Royal Society A: Mathematical,
Physical and Engineering Sciences, 2010, 368(1928): 4585-4605.
[37] Treiber M, Hennecke A, Helbing D. Congested traffic states in empirical observations and micro-
scopic simulations[J]. Physical Review E, 2000, 62(2): 1805-1824.
[38] KingmaD P, Ba J. Adam: Amethod for stochastic optimization[J]. ArXiv preprint arXiv:1412.6980,
2014.
[39] Hoel C J, Wolff K, Laine L. Automated speed and lane change decision making using deep rein-
forcement learning[J]. Proc. Int. Conf. Intell. Transp. Syst. (ITSC), 2018.
[40] Xu Z, Tang C, Tomizuka M. Zero-shot deep reinforcement learning driving policy transfer for au-
tonomous vehicles based on robust control[J]. Proc. Int. Conf. Intell. Transp. Syst. (ITSC), 2018.

33

北京理工大学本科生毕业设计（论文）

Acknowledgment

The completion of this work could have not been possible without the assistance and

guidance of Prof. MeilingWang and Prof. Ching-YaoChan. Their guidance and instructions

throughout this work are sincerely appreciated and gratefully acknowledged.

Besides, I wish to record my gratitude to Dr. Pin Wang, Dr. Fei Ye, Huanjie Wang,

Wei Wang, Zhongyu Li, Xuebing Peng and many other friends who helped me during the

year in UC Berkeley.

It is very lucky of me to have met many friends throughout the four years of under-

graduate life. I would like to thank all my friends for having fun with me.

I would like to express my gratitude to my parents and my family for their support,

encouragement and love throughout my entire life.

Last but not least, thank you to Lujie, for all her love and support along the way we

have traveled.

34

	摘 要
	Abstract
	Introduction
	Background
	Related Work
	Thesis Structure

	Problem Formulation
	Proximal Policy Optimization
	MDP
	Policy Gradient Methods
	Proximal Policy Optimization
	TD()

	Problem Description
	System Architecture
	State and Action Space
	Reward Function
	Safety Action Filter
	Intelligent Driver Model(IDM)
	Baseline Strategy
	Summary

	Simulation Experiment
	Simulation Setup
	Demand Modeling of SUMO
	Evaluation Metrics
	Training and Results
	Training Setup
	Training Results
	Demonstration of a Success Lane Change
	Comparison between Two Policies

	Summary

	Summary and Future Work
	Summary
	Future Work

	References
	Acknowledgment

